"/>
<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        Scientists teach computers to recognize cells, using AI

        Source: Xinhua    2018-04-13 00:14:10

        WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

        A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

        It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

        The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

        Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

        They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

        "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

        The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

        It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

        Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

        The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

        They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

        "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

        "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

        "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

        Editor: yan
        Related News
        Xinhuanet

        Scientists teach computers to recognize cells, using AI

        Source: Xinhua 2018-04-13 00:14:10

        WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

        A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

        It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

        The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

        Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

        They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

        "This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

        The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

        It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

        Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

        The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

        They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

        "The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

        "This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

        "This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

        [Editor: huaxia]
        010020070750000000000000011105521371069391
        主站蜘蛛池模板: chinese性内射高清国产| AV人摸人人人澡人人超碰| china13末成年videos野外| 亚洲人成人无码www| 男人av无码天堂| 正在播放的国产A一片| 日本黄页网站免费观看| 亚洲aⅴ男人的天堂在线观看| 欧乱色国产精品兔费视频| 日本丰滿岳乱DVD| 日本高清久久一区二区三区| 性夜夜春夜夜爽夜夜免费视频 | 在线播放国产不卡免费视频 | 中国熟女仑乱hd| 亚洲国产欧洲精品路线久久| 五月天综合社区| a级黑人大硬长爽猛出猛进| 青青草a国产免费观看| 中文字幕日韩有码第一页| 又爽又大又黄a级毛片在线视频| 日产精品高潮呻吟av久久| 清纯唯美人妻少妇第一页| 国语自产拍精品香蕉在线播放| 牲欲强的熟妇农村老妇女视频| 丰满少妇内射一区| 国产人妻鲁鲁一区二区| 蜜桃臀av一区二区三区| 亚洲国产韩国欧美在线| 黑人巨茎大战俄罗斯美女| 国产精品中文字幕av| av在线 亚洲 天堂| 久久国产综合色免费观看| 狠狠色噜噜狠狠狠狠色综合久| 亚洲精品一区二区在线播| 又大又硬又爽免费视频 | 有码中文字幕一区三区| 大香伊蕉在人线国产免费| 老熟妇乱子交视频一区| 亚洲综合另类小说专区| A三级三级成人网站在线视频| 亚洲高清国产自产拍av|