"/>
<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        New method may solve bottleneck of microelectronics: researchers

        Source: Xinhua    2018-04-23 07:34:16

        LOS ANGELES, April 22 (Xinhua) -- Researchers from Boston University, Massachusetts Institute of Technology, the University of California Berkeley and University of Colorado Boulder have developed a new method to fabricate silicon chips that can communicate with light and are no more expensive than current chip technology, according to the study, published in the latest issue of Nature.

        The electrical signaling bottleneck between current microelectronic chips has left light communication as one of the only options left for further technological progress. The traditional method of data transfer-electrical wires-has a limit on how fast and how far it can transfer data. It also uses a lot of power and generates heat.

        With the relentless demand for higher performance and lower power in electronics, these limits have been reached.

        However, according to the new study, which is the culmination of a several-year-long project funded by the U.S. Defense Advanced Research Project Agency, the new microchip technology capable of optically transferring data could solve the severe bottleneck in current devices by speeding data transfer and reducing energy consumption by orders of magnitude.

        "Instead of a single wire carrying 10 to 100 gigabits per second, you can have a single optical fiber carrying 10 to 20 terabits per second--so about a thousand times more in the same footprint," researcher Milos Popovic from Boston University was quoted as saying in a press release.

        In the new paper, the researchers present a manufacturing solution applicable to even the most commercially widespread chips based on bulk silicon, by introducing a set of new material layers in the photonic processing portion of the silicon chip. They demonstrate that this change allows optical communication with no negative impact on electronics.

        "By carefully investigating and optimizing the properties of the additional material layers for photonic devices, we managed to demonstrate state-of-the-art system-level performance in terms of bandwidth density and energy consumption while starting from a much less expensive process compared to competing technologies," said co-first author of the paper Fabio Pavanello.

        The new platform, which brings photonics to state-of-the-art bulk silicon microelectronic chips, promises faster and more energy efficient communication that could vastly improve computing and mobile devices, according to the study.

        "For the most advanced current state-of-the-art and future semiconductor manufacturing technologies with electronic transistor dimensions below 20nm, there is no other way to integrate photonics than this approach," concluded associate professor Vladimir Stojanovic of UC Berkeley, whose team led some of the work.

        Editor: Liangyu
        Related News
        Xinhuanet

        New method may solve bottleneck of microelectronics: researchers

        Source: Xinhua 2018-04-23 07:34:16

        LOS ANGELES, April 22 (Xinhua) -- Researchers from Boston University, Massachusetts Institute of Technology, the University of California Berkeley and University of Colorado Boulder have developed a new method to fabricate silicon chips that can communicate with light and are no more expensive than current chip technology, according to the study, published in the latest issue of Nature.

        The electrical signaling bottleneck between current microelectronic chips has left light communication as one of the only options left for further technological progress. The traditional method of data transfer-electrical wires-has a limit on how fast and how far it can transfer data. It also uses a lot of power and generates heat.

        With the relentless demand for higher performance and lower power in electronics, these limits have been reached.

        However, according to the new study, which is the culmination of a several-year-long project funded by the U.S. Defense Advanced Research Project Agency, the new microchip technology capable of optically transferring data could solve the severe bottleneck in current devices by speeding data transfer and reducing energy consumption by orders of magnitude.

        "Instead of a single wire carrying 10 to 100 gigabits per second, you can have a single optical fiber carrying 10 to 20 terabits per second--so about a thousand times more in the same footprint," researcher Milos Popovic from Boston University was quoted as saying in a press release.

        In the new paper, the researchers present a manufacturing solution applicable to even the most commercially widespread chips based on bulk silicon, by introducing a set of new material layers in the photonic processing portion of the silicon chip. They demonstrate that this change allows optical communication with no negative impact on electronics.

        "By carefully investigating and optimizing the properties of the additional material layers for photonic devices, we managed to demonstrate state-of-the-art system-level performance in terms of bandwidth density and energy consumption while starting from a much less expensive process compared to competing technologies," said co-first author of the paper Fabio Pavanello.

        The new platform, which brings photonics to state-of-the-art bulk silicon microelectronic chips, promises faster and more energy efficient communication that could vastly improve computing and mobile devices, according to the study.

        "For the most advanced current state-of-the-art and future semiconductor manufacturing technologies with electronic transistor dimensions below 20nm, there is no other way to integrate photonics than this approach," concluded associate professor Vladimir Stojanovic of UC Berkeley, whose team led some of the work.

        [Editor: huaxia]
        010020070750000000000000011100001371294411
        主站蜘蛛池模板: 97国内精品久久久久不卡| 国产极品粉嫩馒头一线天| 翘臀少妇被扒开屁股日出水爆乳| 91麻豆国产精品91久久久| 亚洲精品国产无套在线观| 露脸国产精品自产拍在线观看| 老熟妇国产一区二区三区 | 青青草无码免费一二三区| 成码无人AV片在线电影网站| 亚洲大尺度视频在线播放| 一区二区三区无码免费看| 最新亚洲人成网站在线观看 | 五月婷婷中文字幕| 在线看片免费人成视久网| 不卡在线一区二区三区视频| 成人午夜电影福利免费| 九九在线精品国产| 亚洲人交乣女bbw| 中文字幕亚洲资源网久久| 国产一区二区三区美女| 日韩伦理片| 99精品久久精品| 亚洲综合一区二区三区在线| 制服 丝袜 亚洲 中文 综合| 狠狠综合久久综合鬼色| 国产精品制服丝袜无码| 国产精品久久久久久无毒不卡| 久久久无码精品国产一区| 国产色无码精品视频免费| а√天堂中文在线资源bt在线| 四虎影视www在线播放| 日本一区不卡高清更新二区| 国产91在线|中文| 久热久视频免费在线观看| 成在人线av无码免费高潮喷水| 国产裸体无遮挡免费精品| 亚洲欧美日韩精品久久亚洲区色播| 免费成人深夜福利一区| 亚洲高潮喷水无码AV电影| 亚洲一区在线中文字幕| 一区二区三区精品偷拍|