"/>
<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        New method may solve bottleneck of microelectronics: researchers

        Source: Xinhua    2018-04-23 07:34:16

        LOS ANGELES, April 22 (Xinhua) -- Researchers from Boston University, Massachusetts Institute of Technology, the University of California Berkeley and University of Colorado Boulder have developed a new method to fabricate silicon chips that can communicate with light and are no more expensive than current chip technology, according to the study, published in the latest issue of Nature.

        The electrical signaling bottleneck between current microelectronic chips has left light communication as one of the only options left for further technological progress. The traditional method of data transfer-electrical wires-has a limit on how fast and how far it can transfer data. It also uses a lot of power and generates heat.

        With the relentless demand for higher performance and lower power in electronics, these limits have been reached.

        However, according to the new study, which is the culmination of a several-year-long project funded by the U.S. Defense Advanced Research Project Agency, the new microchip technology capable of optically transferring data could solve the severe bottleneck in current devices by speeding data transfer and reducing energy consumption by orders of magnitude.

        "Instead of a single wire carrying 10 to 100 gigabits per second, you can have a single optical fiber carrying 10 to 20 terabits per second--so about a thousand times more in the same footprint," researcher Milos Popovic from Boston University was quoted as saying in a press release.

        In the new paper, the researchers present a manufacturing solution applicable to even the most commercially widespread chips based on bulk silicon, by introducing a set of new material layers in the photonic processing portion of the silicon chip. They demonstrate that this change allows optical communication with no negative impact on electronics.

        "By carefully investigating and optimizing the properties of the additional material layers for photonic devices, we managed to demonstrate state-of-the-art system-level performance in terms of bandwidth density and energy consumption while starting from a much less expensive process compared to competing technologies," said co-first author of the paper Fabio Pavanello.

        The new platform, which brings photonics to state-of-the-art bulk silicon microelectronic chips, promises faster and more energy efficient communication that could vastly improve computing and mobile devices, according to the study.

        "For the most advanced current state-of-the-art and future semiconductor manufacturing technologies with electronic transistor dimensions below 20nm, there is no other way to integrate photonics than this approach," concluded associate professor Vladimir Stojanovic of UC Berkeley, whose team led some of the work.

        Editor: Liangyu
        Related News
        Xinhuanet

        New method may solve bottleneck of microelectronics: researchers

        Source: Xinhua 2018-04-23 07:34:16

        LOS ANGELES, April 22 (Xinhua) -- Researchers from Boston University, Massachusetts Institute of Technology, the University of California Berkeley and University of Colorado Boulder have developed a new method to fabricate silicon chips that can communicate with light and are no more expensive than current chip technology, according to the study, published in the latest issue of Nature.

        The electrical signaling bottleneck between current microelectronic chips has left light communication as one of the only options left for further technological progress. The traditional method of data transfer-electrical wires-has a limit on how fast and how far it can transfer data. It also uses a lot of power and generates heat.

        With the relentless demand for higher performance and lower power in electronics, these limits have been reached.

        However, according to the new study, which is the culmination of a several-year-long project funded by the U.S. Defense Advanced Research Project Agency, the new microchip technology capable of optically transferring data could solve the severe bottleneck in current devices by speeding data transfer and reducing energy consumption by orders of magnitude.

        "Instead of a single wire carrying 10 to 100 gigabits per second, you can have a single optical fiber carrying 10 to 20 terabits per second--so about a thousand times more in the same footprint," researcher Milos Popovic from Boston University was quoted as saying in a press release.

        In the new paper, the researchers present a manufacturing solution applicable to even the most commercially widespread chips based on bulk silicon, by introducing a set of new material layers in the photonic processing portion of the silicon chip. They demonstrate that this change allows optical communication with no negative impact on electronics.

        "By carefully investigating and optimizing the properties of the additional material layers for photonic devices, we managed to demonstrate state-of-the-art system-level performance in terms of bandwidth density and energy consumption while starting from a much less expensive process compared to competing technologies," said co-first author of the paper Fabio Pavanello.

        The new platform, which brings photonics to state-of-the-art bulk silicon microelectronic chips, promises faster and more energy efficient communication that could vastly improve computing and mobile devices, according to the study.

        "For the most advanced current state-of-the-art and future semiconductor manufacturing technologies with electronic transistor dimensions below 20nm, there is no other way to integrate photonics than this approach," concluded associate professor Vladimir Stojanovic of UC Berkeley, whose team led some of the work.

        [Editor: huaxia]
        010020070750000000000000011100001371294411
        主站蜘蛛池模板: 微拍福利一区二区三区| 色婷婷日日躁夜夜躁| 久久久久久久久18禁秘| 欧美videos粗暴| 国产一区二区三区导航| 国产精品免费精品自在线观看| 久久天天躁狠狠躁夜夜avapp| 麻花传剧mv在线看免费| 亚洲经典一区二区三区四区| 美女禁区a级全片免费观看| 啦啦啦啦在线视频免费播放6| 99久久精品国产一区色| 制服丝袜国产精品| 在线观看热码亚洲av每日更新| 中文国产成人久久精品小说| 18禁床震无遮掩视频| 最近中文字幕国产精选| 色欲香天天天综合网站无码| 亚洲第一综合天堂另类专| 人妻av无码系列一区二区三区| 国产午夜福利在线观看播放| 国产精品久久久久aaaa| 久久日韩在线观看视频| 野外少妇被弄到喷水在线观看| 中文字幕在线日韩一区| 国产美熟女乱又伦AV果冻传媒| 男人深夜影院无码观看| 午夜免费福利小电影| 浮力影院欧美三级日本三级| 亚洲激情一区二区三区视频 | 精国产品一区二区三区a片| 久久精品人妻少妇一区二| 免费人成在线观看网站| 日韩精品一区二区三区色| 免费国产一级特黄aa大片在线| 中文字幕乱码中文乱码毛片| 日日噜噜夜夜狠狠久久无码区| 少妇人妻偷人精品视频| 97欧美精品系列一区二区| 午夜性做爰电影| 午夜免费无码福利视频麻豆|