<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        China launches electromagnetic satellite to study earthquake precursors

        Source: Xinhua| 2018-02-02 18:54:37|Editor: Jiaxin
        Video PlayerClose

        by Xinhua writers Quan Xiaoshu, Liu Wei

        JIUQUAN, Feb. 2 (Xinhua) -- China on Friday launched its first seismo-electromagnetic satellite to study seismic precursors, which might help establish a ground-space earthquake monitoring and forecasting network in the future.

        A Long March-2D rocket launched at 15:51 from Jiuquan Satellite Launch Center, in northwest China's Gobi Desert, carried the 730-kilogram China Seismo-Electromagnetic Satellite (CSES) into a sun-synchronous orbit at an altitude of about 500 kilometers.

        Known as Zhangheng 1 in Chinese, it will help scientists monitor the electromagnetic field, ionospheric plasma and high-energy particles for an expected mission life of five years, said Zhao Jian, a senior official with China National Space Administration (CNSA).

        The satellite is named after Zhang Heng, a renowned scholar of the East Han Dynasty (25-220), who pioneered earthquake studies by inventing the first ever seismoscope in the year 132.

        Zhangheng 1 will record electromagnetic data associated with earthquakes above 6 magnitude in China and those above 7 magnitude around the world, in a bid to identify patterns in the electromagnetic disturbances in the near-Earth environment, Zhao said.

        Covering the latitude area between 65 degrees north and 65 degrees south, it will focus on Chinese mainland, areas within 1,000 kilometers to China's land borders and two major global earthquake belts.

        Zhangheng 1 was funded by CNSA, developed by China Earthquake Administration (CEA) and produced by DFH Satellite Co., Ltd., a subsidiary of China Academy of Space Technology (CAST).

        Based on a CAST2000 platform, Zhangheng 1 is a cubic satellite, 1.4 meters on each side. It has a single solar panel and six booms, which will deploy and keep electromagnetic detectors more than 4 meters away from the satellite, said Zhou Feng, a senior manager with DFH Satellite Company.

        It carries a high-precision magnetometer, a search-coil magnetometer and electric field probes to measure components and intensity of the magnetic and electric fields. It is also equipped with a Langmuir probe, a plasma analyzer, a GNSS occultation receiver and a tri-band beacon to measure in-situ plasma and ionospheric profile as well, Zhou said.

        It also carries high-energy particle detectors, some of which are provided by Italian partners, and a magnetic field calibration device developed in Austria, according to Zhou.

        DETECTING EARTHQUAKE PRECURSORS

        China is one of the countries most affected by dynamic earthquakes, which are often widespread over terrain, high in magnitude and shallow in the epicenter.

        However, scientists around the world are still unable to predict earthquakes despite efforts by various countries since the 1950s.

        In recent years, more efforts have focused on monitoring seismo-electromagnetic anomalies in the near-Earth environment.

        Research shows that just before a quake, tectonic forces acting on the Earth's crust emit electromagnetic waves and twist magnetic field lines. But such electromagnetic phenomena are relatively weak and need further study to be useful.

        Zhangheng 1 will help scientists better understand the coupling mechanisms of the upper atmosphere, ionosphere and magnetosphere and the temporal variations of the geomagnetic field, and thus accumulate data for the research of seismic precursors, Zhao said.

        "Zhangheng 1 cannot be used to predict earthquakes directly, but it will help prepare the research and technologies for a ground-space earthquake monitoring and forecasting system in the future," he noted.

        Shen Xuhui, deputy chief designer of Zhangheng 1, said it will gather enough data to build models of the Earth's geomagnetic field and ionosphere, which are still unknown to China.

        "Zhangheng 1, with a wider coverage and better electromagnetic environment from space, will be an important supplement to earthquake monitoring in Qinghai-Tibet Plateau and sea areas that cannot be fully covered by the ground observation network," said Shen, also chief engineer of the Institute of Crustal Dynamics of the CEA.

        It will have access to more earthquake data, which will help identify patterns in pre-quake changes in the ionosphere via statistical analysis, Shen added.

        EXTREME MAGNETIC CLEANNESS

        In order to better detect the minor ionospheric changes caused by quakes and accumulate data on high-energy particles, plasma and electromagnetic fields, Zhangheng 1 must be extremely clean, which means it shall make the sensors free of its own disturbances in terms of magnetic fields and charging effects.

        The mission requires the satellite's own magnetism be controlled within 0.5 nT, which is equivalent to 1/100,000 of the background magnetic strength on the orbit. Zhangheng 1's electromagnetic cleanliness eventually reached an unprecedented 0.33 nT, through structural and design optimization.

        "We used hinged booms of nearly 5 meters with detectors on the far ends so as to decrease disturbances from the satellite platform. We also limited the use of magnetic materials, and ran strict simulation and magnetic tests to calibrate its data," said Yuan Shigeng, general director and chief designer of the satellite with CAST.

        For example, engineers in charge of the data transmission subsystem spent four years minimizing its electromagnetic emissions, making sure the collected data will return to researchers accurately.

        They had to find non-magnetic or low-magnetic materials for the system. "Many instruments and detectors in other satellites use steel screws, but we used less magnetic titanium screws instead," said Wu Zengyin, one of the satellite's main designers with CAST. "We also cut down the electric current loop area on the circuit boards so as to decrease their magnetic torque."

        "Before the launch, satellites in orbit with high magnetic cleanness had all been developed by other countries, and Zhangheng 1 fills the gap," Yuan Shigeng said.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011100001369450061
        主站蜘蛛池模板: 国产SM重味一区二区三区 | 亚洲av无码精品色午夜蛋壳| 日本欧美一区二区免费视频| 久久免费精品国产72精品| 日韩人妻精品中文字幕| 欧洲精品码一区二区三区| 三级4级全黄60分钟| 中文字幕在线永久免费视频| 无码午夜人妻一区二区三区不卡视频 | 亚洲欧美综合精品成人导航| 亚洲各类熟女们中文字幕| 亚洲人成网站在小说| 国产欧美日韩视频怡春院| 偷青青国产精品青青在线观看| 美女自卫慰黄网站| 久久99精品久久水蜜桃| 亚洲情色av一区二区| 日韩欧美视频一区二区三区| 日韩人妻无码一区二区三区| AV人摸人人人澡人人超碰| 国产精品久久久久久久影院| 精品国产一区二区三区av性色| 久久香蕉欧美精品| 免费无码又爽又刺激成人| 日本夜爽爽一区二区三区| 久久久久成人片免费观看蜜芽| 免费人成网站免费看视频| 亚洲免费视频一区二区三区| 狠狠v日韩v欧美v| 秋霞A级毛片在线看| 免费av毛片免费观看| 91中文字幕一区在线| 亚洲天堂一区二区久久| 麻豆一区二区三区香蕉视频| 四虎影院176| 一本高清码二区三区不卡| 91精品乱码一区二区三区| 久久人人妻人人爽人人爽| 亚洲欧美在线观看一区二区| 男女性高爱潮免费网站| 精精国产XXX在线观看|