<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        HIV vaccine for HIV-negative people anticipates clinical trial

        Source: Xinhua| 2018-06-05 00:27:32|Editor: yan
        Video PlayerClose

        WASHINGTON, June 4 (Xinhua) -- The preliminary human trail of an experimental vaccine regiment is anticipated to begin in the second half of 2019, according to a study published on Monday in the journal Nature medicine.

        The "broadly neutralizing" vaccine regiment based on the structure of a vulnerable site on HIV was found to have elicited antibodies in mice, guinea pigs and monkeys that could neutralize dozens of HIV strains from around the world.

        The new regiment reflected the approach scientists used to develop an HIV vaccine as they first identify powerful HIV antibodies that can neutralize many strains of the virus, and then try to elicit those antibodies with a vaccine based on the structure of the HIV surface protein where the antibodies bind.

        The study was led by Peter D. Kwong, and John R. Mascola with the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health (NIH) under the United States Department of Health and Human Services.

        "This elegant study is a potentially important step forward in the ongoing quest to develop a safe and effective HIV vaccine," said NIAID Director Anthony S. Fauci.

        NIH vaccine scientist Zhou Tongqing told Xinhua that this is a revolutionary discovery since in past three decades, no research produced so good a result that elicit "broad neutralizing antibiotics" in so many animal models.

        Over the past several years, HIV researchers have discovered many powerful, naturally occurring antibodies that can prevent multiple HIV strains from infecting human cells in the laboratory.

        About half of people living with HIV make these so-called "broadly neutralizing" antibodies, but usually only after several years of infection, long after the virus has established a foothold in the body.

        Since scientists have identified and characterized the sites, or epitopes, on HIV where each known broadly neutralizing antibody binds, many laboratories are developing HIV vaccine candidates based on the structure of these epitopes with the goal of coaxing the immune systems of HIV-negative people to make protective antibodies after vaccination.

        HOW IT WORKS?

        The experimental vaccine reported in this study is based on an epitope called the HIV fusion peptide, identified by NIAID scientists in 2016.

        The fusion peptide, a short string of amino acids, is part of the spike on the surface of HIV that the virus uses to enter human cells.

        According to the scientists, the fusion peptide epitope is particularly promising for use as a vaccine for two reasons.

        Firstly, its structure is the same across most strains of HIV, and secondly the immune system clearly "sees" it and makes a strong immune response to it because the fusion peptide lacks sugars that obscure the immune system's view of other HIV epitopes.

        The scientists first designed the immunogens, proteins designed to activate an immune response, using a collection of antibodies that target the fusion peptide epitope, and then tested in mice which immunogens most effectively elicited antibodies to the fusion peptide.

        They found that the best immunogen consisted of eight amino acids of the fusion peptide bonded to a carrier that evoked a strong immune response.

        To improve their results, the scientists paired this immunogen with a replica of the HIV spike.

        The researchers then tested different combinations of injections of the protein plus HIV spike in mice and analyzed the antibodies that the vaccine regimens generated.

        The antibodies attached to the HIV fusion peptide and neutralized up to 31 percent of viruses from a globally representative panel of 208 HIV strains.

        Based on their analyses, the scientists adjusted the vaccine regimen and tested it in guinea pigs and monkeys. These tests also yielded antibodies that neutralized a substantial fraction of HIV strains, providing initial evidence that the vaccine regimen may work in multiple species.

        The scientists are now working to improve the vaccine regimen, including making it more potent and able to achieve more consistent outcomes with fewer injections.

        The researchers also are isolating additional broadly neutralizing antibodies generated by the vaccine in monkeys, and they will assess these antibodies for their ability to protect the animals from a monkey version of HIV.

        The NIAID scientists will use their findings to optimize the vaccine and then manufacture a version of it suitable for safety testing in human volunteers in a carefully designed and monitored clinical trial.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011105521372299821
        主站蜘蛛池模板: 国产精品无码久久久久AV| 午夜福利yw在线观看2020| 日韩精品久久久肉伦网站| 亚洲国产熟女一区二区三区| 国产亚洲欧美日韩在线一区| 国产专区一va亚洲v天堂| 乳欲人妻办公室奶水| 无码gogo大胆啪啪艺术| 国产精品线在线精品| 中文字幕在线精品国产| 久久不见久久见www日本| 伊在人间香蕉最新视频| 福利无遮挡喷水高潮| 妺妺窝人体色www聚色窝仙踪| 国产视频深夜在线观看| 国产精品久久久久影院亚瑟| 久久综合色之久久综合色| 顶级嫩模精品视频在线看| av天堂久久精品影音先锋| 日本福利一区二区精品| 在线天堂中文新版www| 国产精品国产高清国产一区| 在线高清免费不卡全码| 国产天美传媒性色av| 亚洲国产国语自产精品| 国产福利姬喷水福利在线观看| 精品日韩精品国产另类专区| 国产福利高颜值在线观看| 私人高清影院| 亚洲中文在线视频| 中文字幕色av一区二区三区| 亚洲精品成人福利网站| 99re在线视频观看| 亚洲午夜无码久久久久小说| 亚洲一区无码精品色| 激情综合网激情五月俺也去| 欧美国产综合视频| 亚洲欧美综合精品成人网站| 国产一区二区四区不卡| 亚洲中文字幕麻豆一区| 桃花岛亚洲成在人线AV|