<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        China Focus: Data-labeling: the human power behind Artificial Intelligence

        Source: Xinhua| 2019-01-17 20:42:21|Editor: ZX
        Video PlayerClose

        BEIJING, Jan. 17 (Xinhua) -- In a five-story building on the outskirts of Beijing, 22-year-old Zhang Yusen stares at a computer screen, carefully drawing boxes around cars in street photos.

        As artificial voices replace human customer services in call centers and robots replace workers on production lines, Zhang, a vocational school graduate, has found a steady job: data-labeling, a new industry laying the groundwork for the development of AI technologies.

        SUPERVISED LEARNING

        As the "artificial" part of AI, data labeling receives much less media attention than the "intelligence" part of computer algorithms.

        Facial recognition, self-driving, diagnosis of tumors by computer systems and the defeat of best human Go player by Alpha Go are ways AI technologies have amazed in recent years.

        However, for researchers, the current AI technologies are still quite limited and at an early stage.

        Professor Chen Xiaoping, director of Robotics Lab at the University of Science and Technology of China, said all AI technologies so far have come from "supervised" learning in which an AI system is trained with specific forms of data.

        Take training a machine to recognize dogs for instance: the system must be fed vast numbers of pictures labeled by humans to tell the system which pictures have dogs and which don't.

        Chen noted the human brain is excellent at processing unknown information with reasoning, but it is still impossible for AI. A kindergartener can make the guess of soccer ball from clues like "a black and white round object you can kick," but it's not a easy task for AI. An AI system might be able to tell all different kinds of dogs, but it cannot tell a stuffed animal is not real if such images are not sent to the system.

        Yann LeCun, AI scientist at Facebook and widely considered one of the "godfathers" of machine-learning, said recently, "Our best AI systems have less common sense than a house cat."

        Behind powerful AI algorithms are vast complicated dataset built and labeled by humans.

        ImageNet is one of the world's largest visual databases designed to train AI systems to see. According to its inventors, it took nearly 50,000 people in 167 countries and regions to clean, sort and label nearly a billion images over more than three years.

        QUALITY CHECKING

        For top researchers like Chen Xiaoping, the next AI breakthrough is expected in self-supervised or unsupervised learning in which AI systems learn without human labeling. But no one knows when it will happen.

        "I think in the next five to 10, maybe 15 years, AI systems will still rely on labeled data." said Du Lin, CEO and founder of data-labeling firm BasicFinder.

        Du published his first paper about computer vision when he was in high school. After graduating from college, his first windfall came from selling a startup data-digging firm for 4 million U.S. dollars.

        In 2014, Du and his partners noticed the rise of AI deep-learning and founded BasicFinder. The company is now a leading data-labeling company, with clients including Stanford University, the Chinese Academy of Sciences, China Mobile and Chinese AI startup SenseTime.

        At BasicFinder, a typical work flow starts with taggers like Zhang Yusen. After training two to three months, they draw boxes around cars and pedestrians in street photos, tag ancient German letters, or transcribe snatches of speech.

        The labeled images are submitted to quality inspectors who check 2,000 pictures a day. If one image is found inaccurately tagged in every 500 images in random checks, the company is not paid the original price. If the error rate exceeds 1 percent, clients can ask to change data-taggers.

        Du said the company has been optimizing work flow to ensure greater accuracy as well as to protect intellectual property and privacy.

        HUMAN IN LOOP

        A model that requires human interaction is called "human in the loop" and humans remain in the loop much longer than many have expected, said Du.

        Data-taggers now work on outsourcing platforms as far afield as Mexico, Kenya, India and Venezuela. Anyone can create an account to become a freelance data-tagger.

        But Du strongly disagrees that data-labeling companies, depicted in some media reports as "the dirty little secret" of AI, resemble Foxconn's infamous iPhone factories.

        He noted that due to the nature of AI deep-learning, it is the greater accuracy of labeled data that keeps a company alive and thriving, rather than low prices and cheap labor.

        China's Caijing magazine reported in October last year that about half of data-labeling companies in China's Henan Province went bust in 2018 as orders dried up.

        Du said that in the past two years, many found data-labeling a tough market. The first spurt of growth has ended and a lot of workshop-like companies have been knocked out.

        A full-time data-tagger at BasicFinder can earn 6,000 to 7,000 yuan a month, along with accommodation and social benefits. In the first three quarters of 2018, the disposable income per capita in Beijing was 46,426 yuan, around 5,158 yuan a month, according to local government statistics.

        Zhang Yusen and his girlfriend, who also works at BasicFinder as a quality inspector are so far enjoying their work.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011100001377521541
        主站蜘蛛池模板: 激情文学一区二区国产区| 呦女亚洲一区精品| 深夜福利资源在线观看| 亚洲精品久荜中文字幕| 色99久久久久高潮综合影院| 久久天天躁夜夜躁狠狠| 亚洲一区二区国产精品视频| 亚洲男人AV天堂午夜在| 亚洲黄色高清| 国产成人亚洲日韩欧美| 中国毛片网| 国内精品久久黄色三级乱| 国产a在视频线精品视频下载| 成年无码av片在线蜜芽| 三级三级三级A级全黄| 国产婷婷精品av在线| 好爽毛片一区二区三区四| 国产精品毛片va一区二区三区| 日韩一区二区三在线观看| 一本久久a久久精品综合| 狠狠综合久久av一区二| 亚洲69视频| 最近中文字幕完整版hd| 欧美日本国产va高清cabal| 国产成人拍精品视频午夜网站| 国产午夜福利在线视频| 亚洲AV无码不卡一区二区三区| 日韩亚洲精品中文字幕| 国产人妖cd在线看网站| 九九热视频精选在线播放| 天天综合天天色| 国产一区二区不卡精品视频| 久久天天躁狠狠躁夜夜躁| 亚洲av激情一区二区| 人人妻人人狠人人爽| 色99久久久久高潮综合影院| 2021亚洲va在线va天堂va国产 | a级免费视频| 久久精品亚洲精品国产色婷 | 精品国偷自产在线视频99| 99爱视频精品免视看|