<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        China Focus: Data-labeling: the human power behind Artificial Intelligence

        Source: Xinhua| 2019-01-17 20:42:21|Editor: ZX
        Video PlayerClose

        BEIJING, Jan. 17 (Xinhua) -- In a five-story building on the outskirts of Beijing, 22-year-old Zhang Yusen stares at a computer screen, carefully drawing boxes around cars in street photos.

        As artificial voices replace human customer services in call centers and robots replace workers on production lines, Zhang, a vocational school graduate, has found a steady job: data-labeling, a new industry laying the groundwork for the development of AI technologies.

        SUPERVISED LEARNING

        As the "artificial" part of AI, data labeling receives much less media attention than the "intelligence" part of computer algorithms.

        Facial recognition, self-driving, diagnosis of tumors by computer systems and the defeat of best human Go player by Alpha Go are ways AI technologies have amazed in recent years.

        However, for researchers, the current AI technologies are still quite limited and at an early stage.

        Professor Chen Xiaoping, director of Robotics Lab at the University of Science and Technology of China, said all AI technologies so far have come from "supervised" learning in which an AI system is trained with specific forms of data.

        Take training a machine to recognize dogs for instance: the system must be fed vast numbers of pictures labeled by humans to tell the system which pictures have dogs and which don't.

        Chen noted the human brain is excellent at processing unknown information with reasoning, but it is still impossible for AI. A kindergartener can make the guess of soccer ball from clues like "a black and white round object you can kick," but it's not a easy task for AI. An AI system might be able to tell all different kinds of dogs, but it cannot tell a stuffed animal is not real if such images are not sent to the system.

        Yann LeCun, AI scientist at Facebook and widely considered one of the "godfathers" of machine-learning, said recently, "Our best AI systems have less common sense than a house cat."

        Behind powerful AI algorithms are vast complicated dataset built and labeled by humans.

        ImageNet is one of the world's largest visual databases designed to train AI systems to see. According to its inventors, it took nearly 50,000 people in 167 countries and regions to clean, sort and label nearly a billion images over more than three years.

        QUALITY CHECKING

        For top researchers like Chen Xiaoping, the next AI breakthrough is expected in self-supervised or unsupervised learning in which AI systems learn without human labeling. But no one knows when it will happen.

        "I think in the next five to 10, maybe 15 years, AI systems will still rely on labeled data." said Du Lin, CEO and founder of data-labeling firm BasicFinder.

        Du published his first paper about computer vision when he was in high school. After graduating from college, his first windfall came from selling a startup data-digging firm for 4 million U.S. dollars.

        In 2014, Du and his partners noticed the rise of AI deep-learning and founded BasicFinder. The company is now a leading data-labeling company, with clients including Stanford University, the Chinese Academy of Sciences, China Mobile and Chinese AI startup SenseTime.

        At BasicFinder, a typical work flow starts with taggers like Zhang Yusen. After training two to three months, they draw boxes around cars and pedestrians in street photos, tag ancient German letters, or transcribe snatches of speech.

        The labeled images are submitted to quality inspectors who check 2,000 pictures a day. If one image is found inaccurately tagged in every 500 images in random checks, the company is not paid the original price. If the error rate exceeds 1 percent, clients can ask to change data-taggers.

        Du said the company has been optimizing work flow to ensure greater accuracy as well as to protect intellectual property and privacy.

        HUMAN IN LOOP

        A model that requires human interaction is called "human in the loop" and humans remain in the loop much longer than many have expected, said Du.

        Data-taggers now work on outsourcing platforms as far afield as Mexico, Kenya, India and Venezuela. Anyone can create an account to become a freelance data-tagger.

        But Du strongly disagrees that data-labeling companies, depicted in some media reports as "the dirty little secret" of AI, resemble Foxconn's infamous iPhone factories.

        He noted that due to the nature of AI deep-learning, it is the greater accuracy of labeled data that keeps a company alive and thriving, rather than low prices and cheap labor.

        China's Caijing magazine reported in October last year that about half of data-labeling companies in China's Henan Province went bust in 2018 as orders dried up.

        Du said that in the past two years, many found data-labeling a tough market. The first spurt of growth has ended and a lot of workshop-like companies have been knocked out.

        A full-time data-tagger at BasicFinder can earn 6,000 to 7,000 yuan a month, along with accommodation and social benefits. In the first three quarters of 2018, the disposable income per capita in Beijing was 46,426 yuan, around 5,158 yuan a month, according to local government statistics.

        Zhang Yusen and his girlfriend, who also works at BasicFinder as a quality inspector are so far enjoying their work.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011100001377521541
        主站蜘蛛池模板: 日韩在线观看精品亚洲| 国产情侣激情在线对白| 日韩区二区三区中文字幕| 亚洲色欲色欱WWW在线| 欧美精品va在线观看| 产综合无码一区| 免费一区二三区三区蜜桃| 成人白浆一区二区三区在线观看| 加勒比精品一区二区三区| 伊人久久婷婷综合五月97色| 欧美成人精品手机在线| 亚洲中文字幕一区二区| 精品国产午夜福利在线观看| 色欲综合久久中文字幕网| 中文在线√天堂| 免费国产精品黄色一区二区| 久久综合狠狠综合久久| 人妻熟妇乱又伦精品视频中文字幕 | 亚洲国产另类久久久精品黑人| 一级二级三一片内射视频在线| AV无码不卡一区二区三区| 亚洲免费成人av一区| 久久亚洲精品情侣| 在线午夜精品自拍小视频| 九九成人免费视频| 又爆又大又粗又硬又黄的a片| 久草热在线视频免费播放| 五月婷婷中文字幕| 国产熟睡乱子伦视频在线播放| 青青青爽在线视频观看| 五月天中文字幕mv在线| 久久久国产成人一区二区 | 亚洲自拍另类| 中国亚州女人69内射少妇| 蜜臀av久久国产午夜| 欧美一区二区三区欧美日韩亚洲| 99热久久这里只有精品| 亚洲人成网网址在线看| 日本系列亚洲系列精品| jizzjizz日本高潮喷水| 亚洲国产精品久久久久4婷婷|