<blockquote id="pl83f"><p id="pl83f"></p></blockquote>
<s id="pl83f"><li id="pl83f"></li></s>

      
      
      <sub id="pl83f"><rt id="pl83f"></rt></sub>

        <blockquote id="pl83f"><p id="pl83f"></p></blockquote>
        <sub id="pl83f"><rt id="pl83f"></rt></sub>
        女人的天堂av在线播放,3d动漫精品一区二区三区,伦精品一区二区三区视频,国产成人av在线影院无毒,亚洲成av人片天堂网老年人,最新国产精品剧情在线ss,视频一区无码中出在线,无码国产精品久久一区免费

        Feature: Aussie scientists' global challenge to deter "overconfident" robots

        Source: Xinhua| 2019-10-25 19:55:31|Editor: Li Xia
        Video PlayerClose

        SYDNEY, Oct. 25 (Xinhua) -- We could soon live in a world where domestic service robots perform household chores and clean up for us as we go about our daily lives. But what if your new mechanical helper decides to put your laptop in the dishwasher, places your cat in the bathtub and throws your treasured possessions into the trash?

        Current vision systems being tested on "simulated" domestic robots in the cluttered, unpredictable environments of the real world, are suffering severely from what experts refer to as overconfidence -- meaning robots are unable to know when they don't know exactly what an object is.

        When introduced into our day to day lives, this overconfidence poses a huge risk to people's safety and belongings, and represents a barrier for the development of autonomous robotics.

        "These (models) are often trained on a specific data set, so you show it a lot of examples of different objects. But in the real world, you often encounter situations that are not part of that training data set," Niko Sünderhauf explained to Xinhua. He works as a chief investigator with the Australian Center for Robotic Vision (ACRV), headquartered at Queensland University of Technology.

        "So, if you train these systems to detect 100 different objects, and then it sees one that it has not seen before, it will just overconfidently think it is one of the object types it knows, and then do something with that, and that can be damaging to the object or very unsafe."

        Earlier this year, in an effort to curb these potentially cocky machines, Sünderhauf's team at the ACRV launched a world-first competition, the Robotic Vision Challenge, inviting teams from around the world to find a way to make robots less sure of themselves, and safer for the rest of us.

        Sünderhauf hopes that by crowdsourcing the problem and tapping into researchers' natural competitiveness, they can overcome this monumental stumbling block of modern robotics.

        The open-ended challenge has already captured global attention due to its implications regarding one of the most excitement inducing and ear-tingling concepts in robotics today -- deep learning.

        While it dates back to the 1980s, deep learning "boomed" in 2012 and was hailed as a revolution in artificial intelligence, enabling robots to solve all kinds of complex problems without assistance, and behaving more like humans in the way they see, listen and think.

        When applied to tasks like photo-captioning, online ad targeting, or even medical diagnosis, deep learning has proved incredibly efficient, and many organizations reliably employ these methods, with the cost of mistakes being relatively low.

        However, when you introduce these intelligence systems into a physical machine which will interact with people and animals in the real world -- the stakes are decidedly higher.

        "As soon as you put these systems on robots that work in the real world the consequences can be severe, so it's really important to get this part right and have this inbuilt uncertainty and caution in the system," Sünderhauf said.

        To solve these issues would undoubtedly play a part in taking robotics to the next level, not just in delivering us our autonomous housekeepers, but in a range of other applications from autonomous cars and drones to smart sidewalks and robotic shop attendants.

        "I think this is why this push is coming out of the robotic vision lab at the moment from our side, because we understand it's important and we understand that deep learning can do a lot of important things," Sünderhauf said.

        "But you need to combine these aspects with being able to detect objects and understand them."

        Since it was launched in the middle of the year, the competition has had 111 submissions from 18 teams all around the world and Sünderhauf said that while results have been promising, there is still a long way to go to where they want to be.

        The competition provides participants with 200,000 realistic images of living spaces from 40 simulated indoor video sequences, including kitchens, bedrooms, bathrooms and even outdoor living areas, complete with clutter, and rich with uncertain objects.

        Entrants are required to develop the best possible system of probabilistic object detection, which can accurately estimate spatial and semantic uncertainty.

        Sünderhauf hopes that the ongoing nature of the challenge will motivate teams to come up with a solution which may well propel robotics research and application on a global scale.

        "I think everybody's a little bit competitive and if you can compare how good your algorithm and your research is with a lot of other people around the world who are working on the same problem, it's just very inspiring," Sünderhauf said.

        "It's like the Olympic Games -- when everybody competes under the same rules, and you can see who is doing the best."

        In November, Sünderhauf will travel with members of his team to the annual International Conference on Intelligent Robots and Systems (IROS) held in Macao, China to present and discuss their findings so far.

        As one of three leading robotics conferences in the world, IROS is a valuable opportunity for researchers to come together to compare notes, and collaborate on taking technology to the next level.

        "There will be a lot of interaction and discussion around the ways forward and that will be really exciting to see what everybody thinks and really excited to see different directions," Sünderhauf said.

        TOP STORIES
        EDITOR’S CHOICE
        MOST VIEWED
        EXPLORE XINHUANET
        010020070750000000000000011100001385028851
        主站蜘蛛池模板: 国产一区免费在线观看| 国产综合视频一区二区三区| 老司机精品视频在线| 中文国产不卡一区二区| 久久中文字幕不卡一二区| 亚洲天天堂天堂激情性色| 亚洲午夜av久久久精品影院| 亚洲人成黄网站69影院| 女人张开腿无遮无挡视频| 欧洲一区二区中文字幕| 国产精品美女久久久久久麻豆| 久久精品波多野结衣| 国产亚洲精品久久77777| 50路熟女| 精品偷拍被偷拍在线观看| 在国产线视频A在线视频| 少妇做爰免费视频网站| 久久精品国产清自在天天线| 精品91精品91精品国产片| 国产精品一区二区三区黄| 亚洲一区二区在线无码| 最近中文国语字幕在线播放| 欧美日韩一区二区综合| av天堂午夜精品一区二区三区| 亚洲精品无码日韩国产不卡av| 免费无码黄动漫在线观看| 性色欲情网站iwww九文堂| 色妞永久免费视频| 国产精品嫩草影院一二三区入口| 久久99日本免费国产精品| 亚洲精品成人7777在线观看| 国产专区一va亚洲v天堂| 亚洲 卡通 欧美 制服 中文| 极品美女高潮呻吟国产剧情| 国产免费高清69式视频在线观看| 国产亚洲精品久久久久久床戏| 综合偷自拍亚洲乱中文字幕 | 日本人妻巨大乳挤奶水免费| 国产人妻精品午夜福利免费| 图片区偷拍区小说区五月 | 日本韩国一区二区精品|